Polymeric particle formation through electrospraying at low atmospheric pressure.
نویسندگان
چکیده
Electrospraying is a simple and versatile technique capable of producing polymeric particles. However, most investigations carried out thus far have been performed at ambient atmospheric pressure without studying the influences of pressure on the formation of polymeric particles. Here, we report our investigation on the effects of varying the pressure and the solution concentration on the microstructures of electrosprayed polymeric particles. Pressures are varied from ambient atmospheric pressure to 380 mmHg below ambient pressure, and solution concentrations are varied over a range of 3-7 w/v %. By varying these parameters, we manipulated the rate of solvent evaporation and the solidification of the electrosprayed particles. The results show that changes to the pressure had significant effects on the microstructure and morphology of poly(epsilon-caprolactone) (PCL) particles. The average particle size became larger as the chamber pressure decreased. At a solution concentration of 5 w/v % and a pressure 150 mmHg below ambient pressure, uniform and spherical PCL particles were generated. Electrospun fibers were formed when a solution concentration of 7 w/v % was used. The developed technique can be applied to prepare polymeric drug delivery carriers though a low-pressure-assisted spray-drying method, and is particularly suitable for fabricating delivery microspheres encapsulated with temperature-sensitive drugs and biomolecules.
منابع مشابه
Optimal Fabrication of Nano Menthol/PEG Particles by Electrospraying
Background: L-menthol [(1R,3R,4S)-(-)-menthol] is a flavoring that is the main component of mint herb essential oils, especially of the Mentha piperita and Mentha arvensis species. Its low solubility in aqueous systems makes precise formulation necessary in the final products. Of the methods available for fabrication of nanoparticles for use in pharmaceuticals, electrospraying is easy and requi...
متن کاملEncapsulation of thyme essential oil in polymeric capsules using electrospray method
Background and objectives: Essential oils (EOs) of medicinal herbs are prone to degradation by oxidation, heating, or light. Encapsulation of EOs can protect these fragile volatile natural products from degradation. Thymus vulgaris (thyme) is a well-known herb which has been used as food additive as well as medicine since ancient times. Electrospraying is a novel techn...
متن کاملPreparation and characterization of polycaprolactone microspheres by electrospraying
The ability to reproducibly produce and effectively collect electrosprayed polymeric microspheres with controlled morphology and size in bulk form is challenging. In this study, microparticles were produced by electrospraying polycaprolactone (PCL) of various molecular weights and solution concentrations in chloroform, and by collecting materials on different substrates. The resultant PCL micro...
متن کاملElectrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications
The ability to reproducibly load bioactive molecules into polymeric microspheres is a challenge. Traditional microsphere fabrication methods typically provide inhomogeneous release profiles and suffer from lack of batch to batch reproducibility, hindering their potential to up-scale and their translation to the clinic. This deficit in homogeneity is in part attributed to broad size distribution...
متن کاملAn experimental study of the electrospraying of water in air at atmospheric pressure.
Water solutions with electrical conductivities ranging from that of the deionized water up to 2 S/m have been electrosprayed in air through narrow silica tubes. Results show unambiguously that steady cone jets of water in air without the assistance of glow discharge can be formed for the range of electrical conductivities we have explored. The absence of corona discharge has been proven not onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2009